3.1.16 \(\int \frac {\sqrt {a+b x} (c+d x)^2 (e+f x)}{x} \, dx\)

Optimal. Leaf size=145 \[ \frac {2 (a+b x)^{3/2} \left (2 \left (4 a^2 d^2 f-7 a b d (2 c f+d e)+5 b^2 c (2 c f+7 d e)\right )+3 b d x (-4 a d f+4 b c f+7 b d e)\right )}{105 b^3}+2 c^2 e \sqrt {a+b x}-2 \sqrt {a} c^2 e \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )+\frac {2 f (a+b x)^{3/2} (c+d x)^2}{7 b} \]

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {153, 147, 50, 63, 208} \begin {gather*} \frac {2 (a+b x)^{3/2} \left (2 \left (4 a^2 d^2 f-7 a b d (2 c f+d e)+5 b^2 c (2 c f+7 d e)\right )+3 b d x (-4 a d f+4 b c f+7 b d e)\right )}{105 b^3}+2 c^2 e \sqrt {a+b x}-2 \sqrt {a} c^2 e \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )+\frac {2 f (a+b x)^{3/2} (c+d x)^2}{7 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*x]*(c + d*x)^2*(e + f*x))/x,x]

[Out]

2*c^2*e*Sqrt[a + b*x] + (2*f*(a + b*x)^(3/2)*(c + d*x)^2)/(7*b) + (2*(a + b*x)^(3/2)*(2*(4*a^2*d^2*f - 7*a*b*d
*(d*e + 2*c*f) + 5*b^2*c*(7*d*e + 2*c*f)) + 3*b*d*(7*b*d*e + 4*b*c*f - 4*a*d*f)*x))/(105*b^3) - 2*Sqrt[a]*c^2*
e*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 153

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegerQ[m]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x} (c+d x)^2 (e+f x)}{x} \, dx &=\frac {2 f (a+b x)^{3/2} (c+d x)^2}{7 b}+\frac {2 \int \frac {\sqrt {a+b x} (c+d x) \left (\frac {7 b c e}{2}+\frac {1}{2} (7 b d e+4 b c f-4 a d f) x\right )}{x} \, dx}{7 b}\\ &=\frac {2 f (a+b x)^{3/2} (c+d x)^2}{7 b}+\frac {2 (a+b x)^{3/2} \left (2 \left (4 a^2 d^2 f-7 a b d (d e+2 c f)+5 b^2 c (7 d e+2 c f)\right )+3 b d (7 b d e+4 b c f-4 a d f) x\right )}{105 b^3}+\left (c^2 e\right ) \int \frac {\sqrt {a+b x}}{x} \, dx\\ &=2 c^2 e \sqrt {a+b x}+\frac {2 f (a+b x)^{3/2} (c+d x)^2}{7 b}+\frac {2 (a+b x)^{3/2} \left (2 \left (4 a^2 d^2 f-7 a b d (d e+2 c f)+5 b^2 c (7 d e+2 c f)\right )+3 b d (7 b d e+4 b c f-4 a d f) x\right )}{105 b^3}+\left (a c^2 e\right ) \int \frac {1}{x \sqrt {a+b x}} \, dx\\ &=2 c^2 e \sqrt {a+b x}+\frac {2 f (a+b x)^{3/2} (c+d x)^2}{7 b}+\frac {2 (a+b x)^{3/2} \left (2 \left (4 a^2 d^2 f-7 a b d (d e+2 c f)+5 b^2 c (7 d e+2 c f)\right )+3 b d (7 b d e+4 b c f-4 a d f) x\right )}{105 b^3}+\frac {\left (2 a c^2 e\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x}\right )}{b}\\ &=2 c^2 e \sqrt {a+b x}+\frac {2 f (a+b x)^{3/2} (c+d x)^2}{7 b}+\frac {2 (a+b x)^{3/2} \left (2 \left (4 a^2 d^2 f-7 a b d (d e+2 c f)+5 b^2 c (7 d e+2 c f)\right )+3 b d (7 b d e+4 b c f-4 a d f) x\right )}{105 b^3}-2 \sqrt {a} c^2 e \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 146, normalized size = 1.01 \begin {gather*} \frac {2 \left (7 b e \left (15 b^2 c^2 \sqrt {a+b x}-15 \sqrt {a} b^2 c^2 \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )+5 d (a+b x)^{3/2} (2 b c-a d)+3 d^2 (a+b x)^{5/2}\right )+f (a+b x)^{3/2} \left (42 d (a+b x) (b c-a d)+35 (b c-a d)^2+15 d^2 (a+b x)^2\right )\right )}{105 b^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + b*x]*(c + d*x)^2*(e + f*x))/x,x]

[Out]

(2*(f*(a + b*x)^(3/2)*(35*(b*c - a*d)^2 + 42*d*(b*c - a*d)*(a + b*x) + 15*d^2*(a + b*x)^2) + 7*b*e*(15*b^2*c^2
*Sqrt[a + b*x] + 5*d*(2*b*c - a*d)*(a + b*x)^(3/2) + 3*d^2*(a + b*x)^(5/2) - 15*Sqrt[a]*b^2*c^2*ArcTanh[Sqrt[a
 + b*x]/Sqrt[a]])))/(105*b^3)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.13, size = 202, normalized size = 1.39 \begin {gather*} \frac {2 \left (35 a^2 d^2 f (a+b x)^{3/2}+105 b^3 c^2 e \sqrt {a+b x}+35 b^2 c^2 f (a+b x)^{3/2}+70 b^2 c d e (a+b x)^{3/2}+42 b c d f (a+b x)^{5/2}-70 a b c d f (a+b x)^{3/2}+21 b d^2 e (a+b x)^{5/2}-35 a b d^2 e (a+b x)^{3/2}+15 d^2 f (a+b x)^{7/2}-42 a d^2 f (a+b x)^{5/2}\right )}{105 b^3}-2 \sqrt {a} c^2 e \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(Sqrt[a + b*x]*(c + d*x)^2*(e + f*x))/x,x]

[Out]

(2*(105*b^3*c^2*e*Sqrt[a + b*x] + 70*b^2*c*d*e*(a + b*x)^(3/2) - 35*a*b*d^2*e*(a + b*x)^(3/2) + 35*b^2*c^2*f*(
a + b*x)^(3/2) - 70*a*b*c*d*f*(a + b*x)^(3/2) + 35*a^2*d^2*f*(a + b*x)^(3/2) + 21*b*d^2*e*(a + b*x)^(5/2) + 42
*b*c*d*f*(a + b*x)^(5/2) - 42*a*d^2*f*(a + b*x)^(5/2) + 15*d^2*f*(a + b*x)^(7/2)))/(105*b^3) - 2*Sqrt[a]*c^2*e
*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]

________________________________________________________________________________________

fricas [A]  time = 1.07, size = 403, normalized size = 2.78 \begin {gather*} \left [\frac {105 \, \sqrt {a} b^{3} c^{2} e \log \left (\frac {b x - 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) + 2 \, {\left (15 \, b^{3} d^{2} f x^{3} + 3 \, {\left (7 \, b^{3} d^{2} e + {\left (14 \, b^{3} c d + a b^{2} d^{2}\right )} f\right )} x^{2} + 7 \, {\left (15 \, b^{3} c^{2} + 10 \, a b^{2} c d - 2 \, a^{2} b d^{2}\right )} e + {\left (35 \, a b^{2} c^{2} - 28 \, a^{2} b c d + 8 \, a^{3} d^{2}\right )} f + {\left (7 \, {\left (10 \, b^{3} c d + a b^{2} d^{2}\right )} e + {\left (35 \, b^{3} c^{2} + 14 \, a b^{2} c d - 4 \, a^{2} b d^{2}\right )} f\right )} x\right )} \sqrt {b x + a}}{105 \, b^{3}}, \frac {2 \, {\left (105 \, \sqrt {-a} b^{3} c^{2} e \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) + {\left (15 \, b^{3} d^{2} f x^{3} + 3 \, {\left (7 \, b^{3} d^{2} e + {\left (14 \, b^{3} c d + a b^{2} d^{2}\right )} f\right )} x^{2} + 7 \, {\left (15 \, b^{3} c^{2} + 10 \, a b^{2} c d - 2 \, a^{2} b d^{2}\right )} e + {\left (35 \, a b^{2} c^{2} - 28 \, a^{2} b c d + 8 \, a^{3} d^{2}\right )} f + {\left (7 \, {\left (10 \, b^{3} c d + a b^{2} d^{2}\right )} e + {\left (35 \, b^{3} c^{2} + 14 \, a b^{2} c d - 4 \, a^{2} b d^{2}\right )} f\right )} x\right )} \sqrt {b x + a}\right )}}{105 \, b^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^2*(f*x+e)*(b*x+a)^(1/2)/x,x, algorithm="fricas")

[Out]

[1/105*(105*sqrt(a)*b^3*c^2*e*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) + 2*(15*b^3*d^2*f*x^3 + 3*(7*b^3*d^
2*e + (14*b^3*c*d + a*b^2*d^2)*f)*x^2 + 7*(15*b^3*c^2 + 10*a*b^2*c*d - 2*a^2*b*d^2)*e + (35*a*b^2*c^2 - 28*a^2
*b*c*d + 8*a^3*d^2)*f + (7*(10*b^3*c*d + a*b^2*d^2)*e + (35*b^3*c^2 + 14*a*b^2*c*d - 4*a^2*b*d^2)*f)*x)*sqrt(b
*x + a))/b^3, 2/105*(105*sqrt(-a)*b^3*c^2*e*arctan(sqrt(b*x + a)*sqrt(-a)/a) + (15*b^3*d^2*f*x^3 + 3*(7*b^3*d^
2*e + (14*b^3*c*d + a*b^2*d^2)*f)*x^2 + 7*(15*b^3*c^2 + 10*a*b^2*c*d - 2*a^2*b*d^2)*e + (35*a*b^2*c^2 - 28*a^2
*b*c*d + 8*a^3*d^2)*f + (7*(10*b^3*c*d + a*b^2*d^2)*e + (35*b^3*c^2 + 14*a*b^2*c*d - 4*a^2*b*d^2)*f)*x)*sqrt(b
*x + a))/b^3]

________________________________________________________________________________________

giac [A]  time = 1.37, size = 201, normalized size = 1.39 \begin {gather*} \frac {2 \, a c^{2} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right ) e}{\sqrt {-a}} + \frac {2 \, {\left (35 \, {\left (b x + a\right )}^{\frac {3}{2}} b^{20} c^{2} f + 42 \, {\left (b x + a\right )}^{\frac {5}{2}} b^{19} c d f - 70 \, {\left (b x + a\right )}^{\frac {3}{2}} a b^{19} c d f + 15 \, {\left (b x + a\right )}^{\frac {7}{2}} b^{18} d^{2} f - 42 \, {\left (b x + a\right )}^{\frac {5}{2}} a b^{18} d^{2} f + 35 \, {\left (b x + a\right )}^{\frac {3}{2}} a^{2} b^{18} d^{2} f + 105 \, \sqrt {b x + a} b^{21} c^{2} e + 70 \, {\left (b x + a\right )}^{\frac {3}{2}} b^{20} c d e + 21 \, {\left (b x + a\right )}^{\frac {5}{2}} b^{19} d^{2} e - 35 \, {\left (b x + a\right )}^{\frac {3}{2}} a b^{19} d^{2} e\right )}}{105 \, b^{21}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^2*(f*x+e)*(b*x+a)^(1/2)/x,x, algorithm="giac")

[Out]

2*a*c^2*arctan(sqrt(b*x + a)/sqrt(-a))*e/sqrt(-a) + 2/105*(35*(b*x + a)^(3/2)*b^20*c^2*f + 42*(b*x + a)^(5/2)*
b^19*c*d*f - 70*(b*x + a)^(3/2)*a*b^19*c*d*f + 15*(b*x + a)^(7/2)*b^18*d^2*f - 42*(b*x + a)^(5/2)*a*b^18*d^2*f
 + 35*(b*x + a)^(3/2)*a^2*b^18*d^2*f + 105*sqrt(b*x + a)*b^21*c^2*e + 70*(b*x + a)^(3/2)*b^20*c*d*e + 21*(b*x
+ a)^(5/2)*b^19*d^2*e - 35*(b*x + a)^(3/2)*a*b^19*d^2*e)/b^21

________________________________________________________________________________________

maple [A]  time = 0.01, size = 176, normalized size = 1.21 \begin {gather*} \frac {-2 \sqrt {a}\, b^{3} c^{2} e \arctanh \left (\frac {\sqrt {b x +a}}{\sqrt {a}}\right )+2 \sqrt {b x +a}\, b^{3} c^{2} e +\frac {2 \left (b x +a \right )^{\frac {3}{2}} a^{2} d^{2} f}{3}-\frac {4 \left (b x +a \right )^{\frac {3}{2}} a b c d f}{3}-\frac {2 \left (b x +a \right )^{\frac {3}{2}} a b \,d^{2} e}{3}+\frac {2 \left (b x +a \right )^{\frac {3}{2}} b^{2} c^{2} f}{3}+\frac {4 \left (b x +a \right )^{\frac {3}{2}} b^{2} c d e}{3}-\frac {4 \left (b x +a \right )^{\frac {5}{2}} a \,d^{2} f}{5}+\frac {4 \left (b x +a \right )^{\frac {5}{2}} b c d f}{5}+\frac {2 \left (b x +a \right )^{\frac {5}{2}} b \,d^{2} e}{5}+\frac {2 \left (b x +a \right )^{\frac {7}{2}} d^{2} f}{7}}{b^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^2*(f*x+e)*(b*x+a)^(1/2)/x,x)

[Out]

2/b^3*(1/7*d^2*f*(b*x+a)^(7/2)-2/5*(b*x+a)^(5/2)*a*d^2*f+2/5*(b*x+a)^(5/2)*b*c*d*f+1/5*(b*x+a)^(5/2)*b*d^2*e+1
/3*(b*x+a)^(3/2)*a^2*d^2*f-2/3*(b*x+a)^(3/2)*a*b*c*d*f-1/3*(b*x+a)^(3/2)*a*b*d^2*e+1/3*(b*x+a)^(3/2)*b^2*c^2*f
+2/3*(b*x+a)^(3/2)*b^2*c*d*e+b^3*c^2*e*(b*x+a)^(1/2)-a^(1/2)*b^3*c^2*e*arctanh((b*x+a)^(1/2)/a^(1/2)))

________________________________________________________________________________________

maxima [A]  time = 0.98, size = 152, normalized size = 1.05 \begin {gather*} \sqrt {a} c^{2} e \log \left (\frac {\sqrt {b x + a} - \sqrt {a}}{\sqrt {b x + a} + \sqrt {a}}\right ) + \frac {2 \, {\left (105 \, \sqrt {b x + a} b^{3} c^{2} e + 15 \, {\left (b x + a\right )}^{\frac {7}{2}} d^{2} f + 21 \, {\left (b d^{2} e + 2 \, {\left (b c d - a d^{2}\right )} f\right )} {\left (b x + a\right )}^{\frac {5}{2}} + 35 \, {\left ({\left (2 \, b^{2} c d - a b d^{2}\right )} e + {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} f\right )} {\left (b x + a\right )}^{\frac {3}{2}}\right )}}{105 \, b^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^2*(f*x+e)*(b*x+a)^(1/2)/x,x, algorithm="maxima")

[Out]

sqrt(a)*c^2*e*log((sqrt(b*x + a) - sqrt(a))/(sqrt(b*x + a) + sqrt(a))) + 2/105*(105*sqrt(b*x + a)*b^3*c^2*e +
15*(b*x + a)^(7/2)*d^2*f + 21*(b*d^2*e + 2*(b*c*d - a*d^2)*f)*(b*x + a)^(5/2) + 35*((2*b^2*c*d - a*b*d^2)*e +
(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*f)*(b*x + a)^(3/2))/b^3

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 263, normalized size = 1.81 \begin {gather*} \left (\frac {2\,b\,d^2\,e-6\,a\,d^2\,f+4\,b\,c\,d\,f}{5\,b^3}+\frac {2\,a\,d^2\,f}{5\,b^3}\right )\,{\left (a+b\,x\right )}^{5/2}+\left (a\,\left (a\,\left (\frac {2\,b\,d^2\,e-6\,a\,d^2\,f+4\,b\,c\,d\,f}{b^3}+\frac {2\,a\,d^2\,f}{b^3}\right )-\frac {2\,\left (a\,d-b\,c\right )\,\left (b\,c\,f-3\,a\,d\,f+2\,b\,d\,e\right )}{b^3}\right )-\frac {2\,{\left (a\,d-b\,c\right )}^2\,\left (a\,f-b\,e\right )}{b^3}\right )\,\sqrt {a+b\,x}+\left (\frac {a\,\left (\frac {2\,b\,d^2\,e-6\,a\,d^2\,f+4\,b\,c\,d\,f}{b^3}+\frac {2\,a\,d^2\,f}{b^3}\right )}{3}-\frac {2\,\left (a\,d-b\,c\right )\,\left (b\,c\,f-3\,a\,d\,f+2\,b\,d\,e\right )}{3\,b^3}\right )\,{\left (a+b\,x\right )}^{3/2}+\frac {2\,d^2\,f\,{\left (a+b\,x\right )}^{7/2}}{7\,b^3}+\sqrt {a}\,c^2\,e\,\mathrm {atan}\left (\frac {\sqrt {a+b\,x}\,1{}\mathrm {i}}{\sqrt {a}}\right )\,2{}\mathrm {i} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e + f*x)*(a + b*x)^(1/2)*(c + d*x)^2)/x,x)

[Out]

((2*b*d^2*e - 6*a*d^2*f + 4*b*c*d*f)/(5*b^3) + (2*a*d^2*f)/(5*b^3))*(a + b*x)^(5/2) + (a*(a*((2*b*d^2*e - 6*a*
d^2*f + 4*b*c*d*f)/b^3 + (2*a*d^2*f)/b^3) - (2*(a*d - b*c)*(b*c*f - 3*a*d*f + 2*b*d*e))/b^3) - (2*(a*d - b*c)^
2*(a*f - b*e))/b^3)*(a + b*x)^(1/2) + ((a*((2*b*d^2*e - 6*a*d^2*f + 4*b*c*d*f)/b^3 + (2*a*d^2*f)/b^3))/3 - (2*
(a*d - b*c)*(b*c*f - 3*a*d*f + 2*b*d*e))/(3*b^3))*(a + b*x)^(3/2) + a^(1/2)*c^2*e*atan(((a + b*x)^(1/2)*1i)/a^
(1/2))*2i + (2*d^2*f*(a + b*x)^(7/2))/(7*b^3)

________________________________________________________________________________________

sympy [A]  time = 26.17, size = 167, normalized size = 1.15 \begin {gather*} \frac {2 a c^{2} e \operatorname {atan}{\left (\frac {\sqrt {a + b x}}{\sqrt {- a}} \right )}}{\sqrt {- a}} + 2 c^{2} e \sqrt {a + b x} + \frac {2 d^{2} f \left (a + b x\right )^{\frac {7}{2}}}{7 b^{3}} + \frac {2 \left (a + b x\right )^{\frac {5}{2}} \left (- 2 a d^{2} f + 2 b c d f + b d^{2} e\right )}{5 b^{3}} + \frac {2 \left (a + b x\right )^{\frac {3}{2}} \left (a^{2} d^{2} f - 2 a b c d f - a b d^{2} e + b^{2} c^{2} f + 2 b^{2} c d e\right )}{3 b^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**2*(f*x+e)*(b*x+a)**(1/2)/x,x)

[Out]

2*a*c**2*e*atan(sqrt(a + b*x)/sqrt(-a))/sqrt(-a) + 2*c**2*e*sqrt(a + b*x) + 2*d**2*f*(a + b*x)**(7/2)/(7*b**3)
 + 2*(a + b*x)**(5/2)*(-2*a*d**2*f + 2*b*c*d*f + b*d**2*e)/(5*b**3) + 2*(a + b*x)**(3/2)*(a**2*d**2*f - 2*a*b*
c*d*f - a*b*d**2*e + b**2*c**2*f + 2*b**2*c*d*e)/(3*b**3)

________________________________________________________________________________________